tan ∝ = P tan β, sin ∝ = Q sin β, then cos2 ∝ = ? |
\(\frac{Q^2 - 1}{P^2 - 1}\) \(\frac{Q^2+ 1}{P^2+ 1}\) \(\frac{Q^2 - 1}{P^2+ 1}\) \(\frac{Q^2+ 1}{P^2- 1}\) |
\(\frac{Q^2 - 1}{P^2 - 1}\) |
tan ∝ = P tan β, \(\frac{1}{cot ∝}\) = \(\frac{P}{cot β}\) cot β = P cot ∝ = P \(\frac{cos ∝}{sin ∝}\) & sin ∝ = Q sin β \(\frac{1}{cosec ∝}\) = \(\frac{Q}{cosec β}\) cosec β = Q cosec ∝ = Q \(\frac{1}{sin ∝}\) Now, {cosec2 θ - cot2 θ = 1} cosec2 β - cot2 β = 1 \(\frac{Q^2}{sin^2∝}\) - \(\frac{P^2 cos^2 ∝}{sin^2∝}\) = 1 Q2 - P2 cos2 ∝ = sin2 ∝ = (1 - cos2 ∝) Q2 - 1 = (P2 -1) cos2 ∝ cos2 ∝ = \(\frac{Q^2- 1}{P^2- 1}\) |