Target Exam

CUET

Subject

General Aptitude Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

tan ∝ = P tan β, sin ∝ = Q sin β, then cos2 ∝  = ?

Options:

\(\frac{Q^2 - 1}{P^2 - 1}\)

\(\frac{Q^2+ 1}{P^2+ 1}\)

\(\frac{Q^2 - 1}{P^2+ 1}\)

\(\frac{Q^2+ 1}{P^2- 1}\)

Correct Answer:

\(\frac{Q^2 - 1}{P^2 - 1}\)

Explanation:

tan ∝ = P tan β,

\(\frac{1}{cot ∝}\) = \(\frac{P}{cot β}\)

cot β = P cot ∝ = P \(\frac{cos ∝}{sin ∝}\)

&

sin ∝ = Q sin β

\(\frac{1}{cosec ∝}\) = \(\frac{Q}{cosec β}\)

cosec β = Q cosec ∝ = Q \(\frac{1}{sin ∝}\)

Now,

{cosec2 θ - cot2 θ = 1}

cosec2 β - cot2 β = 1

\(\frac{Q^2}{sin^2∝}\) - \(\frac{P^2 cos^2 ∝}{sin^2∝}\) = 1

Q2 - P2 cos2 ∝ = sin2 ∝ = (1 - cos2 ∝)

Q2 - 1 = (P2 -1) cos2 ∝

cos2 ∝ = \(\frac{Q^2- 1}{P^2- 1}\)