If $A_1, A_2, .....A_n $ are any n events, then |
$P(A_1 ∪ A_2 ∪ ....∪ A_n) = P(A_1) + P(A_2) + ....+ P(A_n)$ $P(A_1 ∪ A_2 ∪ ....∪ A_n) > P(A_1) + P(A_2) + ....+ P(A_n)$ $P(A_1 ∪ A_2 ∪ ....∪ A_n) ≤ P(A_1) + P(A_2) + ....+ P(A_n)$ none of these |
$P(A_1 ∪ A_2 ∪ ....∪ A_n) ≤ P(A_1) + P(A_2) + ....+ P(A_n)$ |
For any two events A and B, we have $P(A ∪ B) = P(A) + P(B) - P(A ∩ B)$ $⇒ P(A ∩ B) ≤ P(A) + P(B)$ Using principle of mathematical induction it can be easily proved that $P\left(\bigcup\limits_{i=1}^nA_i\right) ≤ \sum\limits^{n}_{i=1} P(A_i)$ |