If $A=\begin{bmatrix}0&1&3\\1&2&x\\2&3&1\end{bmatrix}$ and $A^{-1}=\begin{bmatrix}\frac{1}{2}&-4&\frac{5}{2}\\-\frac{1}{2}&3&-\frac{3}{2}\\\frac{1}{2}&3&\frac{1}{2}\end{bmatrix}$, then value of $8x$ is: |
0 1 2 8 |
8 |
The correct answer is Option (4) → 8 *****<\p> Given: $A = \begin{bmatrix} 0 & 1 & 3 \\ 1 & 2 & x \\ 2 & 3 & 1 \end{bmatrix}, \;\; A^{-1} = \begin{bmatrix} \frac{1}{2} & -4 & \frac{5}{2} \\[6pt] -\frac{1}{2} & 3 & -\frac{3}{2} \\[6pt] \frac{1}{2} & 3 & \frac{1}{2} \end{bmatrix}$ Condition: $A \cdot A^{-1} = I$ Second row of $A$ with third column of $A^{-1}$: $[1 \;\; 2 \;\; x] \cdot \begin{bmatrix} \frac{5}{2} \\ -\frac{3}{2} \\ \frac{1}{2} \end{bmatrix}$ $= \; 1 \cdot \frac{5}{2} + 2 \cdot \left(-\frac{3}{2}\right) + x \cdot \frac{1}{2}$ $= \frac{5}{2} - 3 + \frac{x}{2}$ $= \frac{-1}{2} + \frac{x}{2}$ In identity matrix, this element $= 0$. So, $\frac{x}{2} - \frac{1}{2} = 0 \;\;\Rightarrow\;\; x = 1$ Therefore, $8x = 8 \times 1 = 8$ Final Answer: 8 |