A proton has double the kinetic energy of an $α$-particle. The ratio of the de-Broglie wavelength of the proton to that of $α$-particle will be |
$\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{2}}{1}$ $\frac{2}{1}$ |
$\frac{\sqrt{2}}{1}$ |
The correct answer is Option (3) → $\frac{\sqrt{2}}{1}$ de-Broglie wavelength: $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}}$ For proton: $\lambda_p = \frac{h}{\sqrt{2m_p K_p}}$ For $\alpha$-particle: $\lambda_{\alpha} = \frac{h}{\sqrt{2m_{\alpha} K_{\alpha}}}$ Given: $K_p = 2K_{\alpha}$ Ratio: $\frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{m_{\alpha}K_{\alpha}}{m_p K_p}}$ $= \sqrt{\frac{m_{\alpha}K_{\alpha}}{m_p (2K_{\alpha})}}$ $= \sqrt{\frac{m_{\alpha}}{2m_p}}$ Mass of $\alpha$-particle = $4m_p$ $\frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{4m_p}{2m_p}} = \sqrt{2}$ Answer: $\frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{2}$ |