Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Probability

Question:

If the random variable X has the following probability distribution:

X

0

1

2

otherwise

 P(X) 

  k  

  3k  

  5k 

0

Match List-I with List-II

List-I

List-II

(A) $k$

(I) $\frac{13}{9}$

(B) $E (X)$

(II) $\frac{4}{9}$

(C) $P (X ≤ 1)$

(III) $\frac{8}{9}$

(D) $P (1 ≤ X ≤ 2)$

(IV) $\frac{1}{9}$

Choose the correct answer from the options given below:

Options:

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

(A)-(IV), (B)-(I), (C)-(II), (D)-(III)

(A)-(IV), (B)-(II), (C)-(I), (D)-(III)

(A)-(III), (B)-(II), (C)-(I), (D)-(IV)

Correct Answer:

(A)-(IV), (B)-(I), (C)-(II), (D)-(III)

Explanation:

The correct answer is Option (2) → (A)-(IV), (B)-(I), (C)-(II), (D)-(III)

List-I

List-II

(A) $k$

(IV) $\frac{1}{9}$

(B) $E (X)$

(I) $\frac{13}{9}$

(C) $P (X ≤ 1)$

(II) $\frac{4}{9}$

(D) $P (1 ≤ X ≤ 2)$

(III) $\frac{8}{9}$

Given probability distribution:

$X: 0, 1, 2$

$P(X): k, 3k, 5k$

Sum of probabilities = 1:

$k + 3k + 5k = 9k = 1 \Rightarrow k = \frac{1}{9}$

(A) $k = \frac{1}{9} \Rightarrow$ (IV)

Expectation: $E(X) = 0*k + 1*3k + 2*5k = 3k + 10k = 13k = 13*\frac{1}{9} = \frac{13}{9}$ → (I)

$P(X \le 1) = P(0) + P(1) = k + 3k = 4k = \frac{4}{9}$ → (II)

$P(1 \le X \le 2) = P(1) + P(2) = 3k + 5k = 8k = \frac{8}{9}$ → (III)