In a reaction \(A\) and \(B\) reacts to form product. The initial rate of reaction \((r_0)\) was determined using different initial concentration of \(A\) and \(B\).
What is the initial rate of reaction \((r_0)\) when critical concentration of \(A\) and \(B\) is \(0.50\, \ mol/L\) and \(0.50\, \ mol/L\) respectively. |
\(56.75 \times 10^{-4}\, \ molL^{-1}s^{-1}\) \(5.675 \times 10^{-4}\, \ molL^{-1}s^{-1}\) \(21.67 \times 10^{-4}\, \ molL^{-1}s^{-1}\) \(2.167 \times 10^{-4}\, \ molL^{-1}s^{-1}\) |
\(56.75 \times 10^{-4}\, \ molL^{-1}s^{-1}\) |
The correct answer is option 1. \(56.75 \times 10^{-4}\, \ molL^{-1}s^{-1}\). Let the rate law of the given reaction be \(r = k[A]^x[B]^y\) From the given data, we get \(6.81 \times 10^{-4} = k[0.10]^x[0.30]^y\) -------(1) \(2.27 \times 10^{-4} = k[0.10]^x[0.10]^y\) -------(2) \(13.62 \times 10^{-4} = k[0.20]^x[0.30]^y\) -------(3) Dividing equation (1) by equation (2), we get \(\frac{6.81 \times 10^{-4}}{2.27 \times 10^{-4}} = \frac{k[0.10]^x[0.30]^y}{ k[0.10]^x[0.10]^y}\) \(⇒ \frac{6.81}{2.27} = \left(\frac{0.30}{0.10}\right)^y\) \(⇒ (3)^1 = (3)^y\) \(⇒ y = 1\) Dividing equation (3) by (1), we get \(\frac{13.62 \times 10^{-4}}{6.81 \times 10^{-4}} = \frac{k[0.20]^x[0.30]^y}{ k[0.10]^x[0.30]^y}\) \(⇒ \frac{13.62}{2.6.81} = \left(\frac{0.20}{0.10}\right)^x\) \(⇒ (2)^1 = (2)^x\) \(⇒ x = 1\) Let us now put the values of \(x\) and \(y\) in equation (1) to get the value of the rate constant, \(k\) \(6.81 \times 10^{-4} = k[0.10]^1[0.30]^1\) \(⇒ 6.81 \times 10^{-4} = k \times 0.03\) \(⇒ k = \frac{6.81 \times 10^{-4}}{0.03}\) \(⇒ k = 227 \times 10^{-1}\) When critical concentration of \(A\) and \(B\) is \(0.50\, \ mol/L\) and \(0.50\, \ mol/L\) respectively, then \(r = 227 \times 10^{-1} [0.50]^1[0.50]1\) \(⇒ r = 227 \times 10^{-1} \times 0.50 \times 0.50\) \(⇒ r = 56.75 \times 10^{-4}\) |