If $x=\sec \theta-\cos \theta, y=\sec ^n \theta-\cos ^n \theta$ then $\left(\frac{d y}{d x}\right)^2$ is equal to : |
$\frac{n^2\left(y^2+4\right)}{x^2+4}$ $\frac{n^2\left(y^2-4\right)}{x^2}$ $n \frac{y^2-4}{x^2-4}$ $\left(\frac{n y}{x}\right)^2-4$ |
$\frac{n^2\left(y^2+4\right)}{x^2+4}$ |
$\frac{d y}{d \theta}=n \sec ^{n-1} \theta . \sec \theta . \tan \theta-n . \cos ^{n-1} \theta .(-\sin \theta)$ $=n {\left[\sec ^n \theta \frac{\sin \theta}{\cos \theta}+\cos ^{n-1} \theta . \sin \theta\right] }$ $\frac{n \sin \theta}{\cos \theta}\left[\sec ^n \theta+\cos ^n \theta\right]$ $n \tan \theta\left(\sec ^n \theta+\cos ^n \theta\right)$ $\frac{d x}{d \theta}=\sec \theta \tan \theta+\sin \theta=\sec \theta \frac{\sin \theta}{\cos \theta}+\sin \theta$ $=\frac{\sin \theta}{\cos \theta}(\sec \theta+\cos \theta)=\tan \theta(\sec \theta+\cos \theta)$ ∴ $\frac{d y}{d x}=\frac{n \tan \theta\left(\sec ^n \theta+\cos ^n \theta\right)}{\tan \theta(\sec \theta+\cos \theta)}$ $=\frac{n\left(\sec ^n \theta+\cos ^n \theta\right)}{\sec ^2 \theta+\cos \theta}$ ∴ $\left(\frac{d y}{d x}\right)^2=\frac{n^2\left(\sec ^n \theta+\cos ^n \theta\right)^2}{(\sec \theta+\cos \theta)^2}$ Hence (1) is correct answer. |