If $y=A \sin x+B \cos x$, then which of the following is correct? |
$\frac{d^2 y}{d x^2}-y=0$ $\frac{d^2 y}{d x^2}+y=0$ $\frac{d^2 y}{d x^2}=\frac{d y}{d x}$ $\frac{d^2 y}{d x^2}=\frac{-d y}{d x}$ |
$\frac{d^2 y}{d x^2}+y=0$ |
The correct answer is Option (2) → $\frac{d^2 y}{d x^2}+y=0$ $y=A\sin x+B\cos x$ ...(1) $⇒\frac{dy}{dx}=A\cos x-B\sin x$ $⇒\frac{d^2y}{dx^2}=-A\sin x-B\cos x$ ...(2) ∴ from (1) and (2), $⇒\frac{d^2y}{dx^2}+y=0$ |