$\int\limits_0^{1.5} [x]dx$, where [x] denotes the greatest integer function ≤ x, is equal to : |
$\frac{1}{4}$ $\frac{1}{2}$ 1 0 |
$\frac{1}{2}$ |
graph of greatest integer function $\int\limits_0^{1.5} [x]dx$ → area under curve from x = 0 to x = 1 Area = 0 from 1 to 1.5 Area = 0.5 × 1 = 0.5 So total area = 0.5 sq. units |