If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ always make an acute angle with each other for every value of $x \in R$, then: |
$a \in(-\infty, 2)$ $a \in(2, \infty)$ $a \in(-\infty, 1)$ $a \in(1, \infty)$ |
$a \in(2, \infty)$ |
$\vec{a} . \vec{b}=(x \hat{i}+(x-1) \hat{j}+\hat{k}) . ((x+1) \hat{i}+\hat{j}+a \hat{k})$ $=x(x+1)+x-1+a$ $=x^2+2 x+a-1$ We must have $\vec{a} . \vec{b}>0 ~\forall~ x \in R$ $x^2+2 x+a-1>0$ $(x+1)^2+(a-2)>0$ min. value = 0 so $a -2 > 2$ always $⇒a>2$ Hence (2) is correct answer. |