Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Vectors

Question:

If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ always make an acute angle with each other for every value of $x \in R$, then:

Options:

$a \in(-\infty, 2)$

$a \in(2, \infty)$

$a \in(-\infty, 1)$

$a \in(1, \infty)$

Correct Answer:

$a \in(2, \infty)$

Explanation:

$\vec{a} . \vec{b}=(x \hat{i}+(x-1) \hat{j}+\hat{k}) . ((x+1) \hat{i}+\hat{j}+a \hat{k})$

$=x(x+1)+x-1+a$

$=x^2+2 x+a-1$

We must have

$\vec{a} . \vec{b}>0 ~\forall~ x \in R$

$x^2+2 x+a-1>0$

$(x+1)^2+(a-2)>0$

min. value = 0

so $a -2 > 2$ always $⇒a>2$

Hence (2) is correct answer.