A wheel with 8 metallic spokes each 50 cm long is rotated with a speed of 120 rev/min in a plane normal to the horizontal component of the earth's magnetic field. The earth's magnetic field at the place is 0.4 G and the angle of dip is 60°. The induced emf between the axle and the rim of the wheel is: |
$2×10^{-6} V$ $1.23 × 10^{-3} V$ $3.14×10^{-5} V$ $6×10^{-8} V$ |
$3.14×10^{-5} V$ |
The correct answer is Option (3) → $3.14×10^{-5} V$ The induced emf between the axle and the rim of a wheel rotating in a magnetic field is given by, $ε= \frac{1}{2}B_h\omega R^2$ Horizontal component, $B_H = B\cos 60°$ $=0.4×10^{-4}×\frac{1}{2}$ $=0.2×10^{-4}T$ Angular velocity, $ω=120×\frac{2\pi}{60}=4\pi\,rad/s$ $∴ε= \frac{1}{2}×0.2×10^{-4}×4\pi×(0.5)^2$ $=0.1×10^{-4}×\pi$ $≈3.14×10^{-5} V$ |