Three parallel plates (each of area A) are separated by distances $d_1$ and $d_2$ respectively. The in-between spaces are filled with dielectrics of relative permittivity $ε_1$ and $ε_2$. The permittivity of free space is $ε_0$. The capacitance of the combination is |
$ε_0 ε_1 ε_2 / (ε_2 d_1 + ε_1 d_2)$ $ε_0 ε_1 ε_2 A/ (ε_2 d_1 + ε_1 d_2)$ $(ε_2 d_1 + ε_1 d_2)/ε_0 ε_1 ε_2 A$ $ε_1 ε_2 A/(ε_2 d_1 + ε_1 d_2)$ |
$ε_0 ε_1 ε_2 A/ (ε_2 d_1 + ε_1 d_2)$ |
The correct answer is Option (2) → $ε_0 ε_1 ε_2 A/ (ε_2 d_1 + ε_1 d_2)$ For capacitors in series, the equivalent capacitance is given by: $\frac{1}{C_\text{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$ Capacitance of a parallel-plate capacitor with dielectric: $C = \frac{\epsilon A}{d} = \frac{\epsilon_0 \epsilon_r A}{d}$ Here: $C_1 = \frac{\epsilon_0 \epsilon_1 A}{d_1}$ $C_2 = \frac{\epsilon_0 \epsilon_2 A}{d_2}$ Series combination: $\frac{1}{C_\text{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{d_1}{\epsilon_0 \epsilon_1 A} + \frac{d_2}{\epsilon_0 \epsilon_2 A} = \frac{d_1}{\epsilon_0 \epsilon_1 A} + \frac{d_2}{\epsilon_0 \epsilon_2 A}$ So, the equivalent capacitance: $C_\text{eq} = \frac{\epsilon_0 A}{\frac{d_1}{\epsilon_1} + \frac{d_2}{\epsilon_2}}$ Final Answer: $C_\text{eq} = \frac{\epsilon_0 A}{\frac{d_1}{\epsilon_1} + \frac{d_2}{\epsilon_2}}$ |