CUET Preparation Today
CUET
-- Mathematics - Section B1
Relations and Functions
Identify the following function $f(x)=\sqrt{1+x+x^2}-\sqrt{1-x+x^2}$ as
odd
even
Neither odd nor even
Cannot be determined
$f(-x)=\sqrt{1+(-x)+(-x)^2}-\sqrt{1-(-x)+(-x)^2}$
$=\sqrt{1-x+x^2}-\sqrt{1+x+x^2}$
$=-f(x)$
Hence, f(x) is odd.