The molecules of a given mass of a gas have RMS velocity of 200 ms−1 at 27oC and 1.0 × 105 Nm−2 pressure. When the temperature and pressure of the gas are respectively, 127oC and 0.05 × 105 Nm−2, the r.m.s. velocity of its molecules in ms−1 is : |
100\(\sqrt{2}\) \(\frac{400}{\sqrt{3}}\) \(\frac{100\sqrt{2}}{3}\) \(\frac{100}{3}\) |
\(\frac{400}{\sqrt{3}}\) |
\(v_{RMS} ∝ \sqrt{T}\) \(\frac{V_{RMS_{300K}}}{V_{RMS_{400K}}} = \frac{\sqrt{300 K}}{\sqrt{400 K}}\) \(V_{\text{RMS at 400K}}\)=\(\sqrt{\frac{400}{300}}\) × \(V_{\text{RMS at 300K}}\) \(V_{RMS_{300 K}} = 200 m/s \) [from question] ⇒ \(V_{RMS_{400 K}} = \frac{400}{\sqrt{3}}\) |