$\int\frac{1}{x(x^5-1)}dx$ is equal to |
$\frac{1}{5}\log_e\left|\frac{x^5-1}{x^5}\right|+C$: C is an arbitrary constant $\log_e\left|\frac{x^5-1}{x^5}\right|+C$: C is an arbitrary constant $\frac{1}{5}(\log_e|x|+\log_e|x^5-1|) + C$: Cis an arbitrary constant $\log_e\left|\frac{x}{x^5-1}\right|+C$: C is an arbitrary constant |
$\frac{1}{5}\log_e\left|\frac{x^5-1}{x^5}\right|+C$: C is an arbitrary constant |
The correct answer is Option (1) → $\frac{1}{5}\log_e\left|\frac{x^5-1}{x^5}\right|+C$: C is an arbitrary constant Given: $\int \frac{1}{x(x^5 - 1)} \, dx$ Use substitution: Let $t = x^5 \Rightarrow dt = 5x^4 \, dx$ So, $dx = \frac{dt}{5x^4}$ Substitute into the integral: $\int \frac{1}{x(x^5 - 1)} \, dx = \int \frac{1}{x(t - 1)} \cdot \frac{dt}{5x^4}$ $= \int \frac{1}{5x^5(t - 1)} \, dt$ Since $x^5 = t$, so $x^5(t - 1) = t(t - 1)$ Thus, the integral becomes: $\int \frac{1}{5t(t - 1)} \, dt$ Use partial fractions: $\frac{1}{t(t - 1)} = \frac{1}{t - 1} - \frac{1}{t}$ So, the integral becomes: $\frac{1}{5} \int \left( \frac{1}{t - 1} - \frac{1}{t} \right) dt$ $= \frac{1}{5} \left[ \ln |t - 1| - \ln |t| \right] + C$ $= \frac{1}{5} \ln \left| \frac{t - 1}{t} \right| + C$ Substitute $t = x^5$: $= \frac{1}{5} \ln \left| \frac{x^5 - 1}{x^5} \right| + C$ |