For the following probability distribution:
The mean, variance and standard deviation respectively are: |
4, 3.8 and 0.87 4, 3.8 and 0.76 3.8, 4 and 0.76 3.8, 0.76 and 0.87 |
3.8, 0.76 and 0.87 |
The correct answer is Option (4) → 3.8, 0.76 and 0.87 $E(X)=∑(X.P(X))$ $=(3×0.5)+(4×0.2)+(5×0.3)$ $=1.5+0.8+1.5=3.8$ $Var(X)=E(X^2)-(E(X))^2$ $E(X^2)=∑(X^2.P(X))$ $=(3^2×0.5)+(4^2×0.2)+(5^2×0.3)$ $=4.5+3.2+7.5=15.2$ $Var(X)=15.2-(3.8)^2$ $=15.2-14.44$ $=0.76$ Standard Deviation = $SD(X)$ $SD(X)=\sqrt{Var(X)}$ $=\sqrt{0.76}≈0.8718$ |