A fair coin is tossed a fixed number of times. If the probability of getting 11 heads is equal to the probability of getting 13 heads, then the probability of getting 2 heads is: |
$\frac{69}{2^{22}}$ $\frac{23}{2^{24}}$ $\frac{69}{2^{24}}$ $\frac{23}{2^{22}}$ |
$\frac{69}{2^{22}}$ |
The correct answer is Option (1) → $\frac{69}{2^{22}}$ GivenLet the coin be tossed $n$ times. Probability of $k$ heads: $P(k) = \frac{n!}{k!(n-k)!} \left(\frac{1}{2}\right)^n$ Given: $P(11) = P(13)$ $\frac{n!}{11!(n-11)!} = \frac{n!}{13!(n-13)!}$ $13!(n-13)! = 11!(n-11)!$ $12 \cdot 13 \cdot (n-13)! = (n-12)(n-11)(n-13)!$ $156 = (n-12)(n-11)$ $n^2 - 23n - 24 = 0$ $n = 24$ (positive solution) Probability of 2 heads: $P(2) = \frac{24!}{2!(24-2)!} \left(\frac{1}{2}\right)^{24} = \frac{24 \cdot 23}{2} \left(\frac{1}{2}\right)^{24} = 276 \cdot \frac{1}{2^{24}} = \frac{69}{2^{22}}$ |