If matrix $A =\begin{bmatrix}p&-3\\-4&p\end{bmatrix}$ and $|A^3|=64$, then the value of $p$ is: |
±1 ±2 ±3 ±4 |
±4 |
The correct answer is Option (4) → ±4 $A = \begin{bmatrix} p & -3 \\ -4 & p \end{bmatrix}$ $|A^3| = |A|^3 = 64$ $|A| = p \cdot p - (-3)(-4) = p^2 - 12$ $(p^2 - 12)^3 = 64$ $p^2 - 12 = 4 \quad \text{or} \quad p^2 - 12 = -4$ From $p^2 - 12 = 4$: $p^2 = 16 \ \Rightarrow \ p = \pm 4$ From $p^2 - 12 = -4$: $p^2 = 8 \ \Rightarrow \ p = \pm 2\sqrt{2}$ Values of $p$: $\pm 4, \ \pm 2\sqrt{2}$ |