Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Matrices

Question:

If \(4x+3y+6z=25,x+5y+7z=13,2x+9y+z=1\) then value of \(z\) is

Options:

\(1\)

\(3\)

\(-2\)

\(2\)

Correct Answer:

\(2\)

Explanation:

$4x+3y+6z=25$

$x+5y+7z=13$

$2x+9y+z=1$

$\begin{bmatrix}4&6&6\\1&5&7\\2&9&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}25\\13\\1\end{bmatrix}$

$R_1→R_1-2R_3$

$\begin{bmatrix}0&-12&4\\1&5&7\\2&9&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}23\\13\\1\end{bmatrix}$

$R_1↔R_2$

$\begin{bmatrix}1&5&7\\0&-12&4\\2&9&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}13\\23\\1\end{bmatrix}$

$R_3→R_3-R_1$

$\begin{bmatrix}1&5&7\\0&-12&4\\0&-1&-13\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}13\\23\\-12\end{bmatrix}$

$⇒\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}4\\-1\\2\end{bmatrix}$