CUET Preparation Today
CUET
-- Mathematics - Section B1
Continuity and Differentiability
If $x^2+y^2=1$, then:
$y.y''-2(y')^2+1=0$
$y.y''+(y')^2+1=0$
$y.y''-(y')^2-1=0$
$y.y''+2(y')^2+1=0$
We have, $x^2+y^2=1$
$⇒2x+2yy'=0$
$⇒x+yy'=0$
Now, on again differentiating w.r.t. x, we get :
$1+yy''+y'.y'=0$ $∴yy''+(y')^2+1=0$