Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

$\int e^{x^4}\left(x+x^3+2 x^5\right) e^{x^2} d x$ is equal to

Options:

$\frac{1}{2} x e^{x^2} e^{x^4}+C$

$\frac{1}{2} x^2 e^{x^4}+C$

$\frac{1}{2} e^{x^2} e^{x^4}+C$

$\frac{1}{2} x^2 e^{x^2} e^{x^4}+C$

Correct Answer:

$\frac{1}{2} x^2 e^{x^2} e^{x^4}+C$

Explanation:

Let $x^2=t$. Then,

$I=\int e^{x^4}\left(x+x^3+2 x^5\right) e^{x^2} d x=\frac{1}{2} \int e^{t^2}\left(1+t+2 t^2\right) e^t d t$

$\Rightarrow I=\frac{1}{2} \int e^t\left\{t e^{t^2}+\left(e^{t^2}+2 t^2 e^{t^2}\right)\right\} d t$

$\Rightarrow I=\frac{1}{2} e^t\left(t e^{t^2}\right)+C=\frac{1}{2} x^2 e^{x^2} e^{x^4}+C$