If \(\frac{3 - 5x}{2x}\) + \(\frac{3 - 5y}{2y}\) + \(\frac{3 - 5z}{2z}\) = 0, then the value of \(\frac{3}{x}\) + \(\frac{3}{y}\) + \(\frac{3}{z}\) is? |
10 15 45 60 |
15 |
\(\frac{3 - 5x}{2x}\) + \(\frac{3 - 5y}{2y}\) + \(\frac{3 - 5z}{2z}\) = 0 equate all 3 parts separately with zero i) \(\frac{3 - 5x}{2x}\) = 0 ⇒ x = \(\frac{3}{5}\) ii) \(\frac{3 - 5y}{2y}\) = 0 ⇒ y = \(\frac{3}{5}\) iii) \(\frac{3 - 5z}{2z}\) = 0 ⇒ z = \(\frac{3}{5}\)
Put these values in ⇒ \(\frac{3}{x}\) + \(\frac{3}{y}\) + \(\frac{3}{z}\) = \(\frac{3\;×\;5}{3}\) + \(\frac{3\;×\;5}{3}\) + \(\frac{3\;×\;5}{3}\) = 15 |