Statement-1: If $\vec a$ and $\vec b$ are two unit vectors, then $|\vec a+\vec b|^2+|\vec a-\vec b|^2=4$ Statement-2: If a and b are two unit vectors inclined at an angle θ, then the unit vectors along their sum and difference are $\frac{\vec a+\vec b}{2 \cos θ/2}$ and $\frac{\vec a-\vec b}{2 \sin θ/2}$ respectively. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. |
We have, $|\vec a+\vec b|^2+|\vec a-\vec b|^2=2(|\vec a|^2+|\vec b|^2)$ $⇒|\vec a+\vec b|^2+|\vec a-\vec b|^2=2(1+1)=4$ So, statement-1 is true. Since, $\vec a$ and $\vec b$ are unit vectors inclined at an angle θ. $∴|\vec a+\vec b|^2+|\vec a|^2+|\vec b|^2+2(\vec a.\vec b)$ $=|\vec b|^2+|\vec b|^2+|\vec a||\vec b|\cos θ$ $⇒|\vec a+\vec b|^2=2+2\cos θ=2(1+\cos θ)=4\cos^2 θ/2$ and, $|\vec a-\vec b|^2=4\sin^2 θ/2$ Therefore, unit vectors along $\vec a+\vec b$ and $\vec a-\vec b$ are $\frac{\vec a+\vec b}{2 \cos θ/2}$ and $\frac{\vec a-\vec b}{2 \sin θ/2}$ respectively. So, statement-2 is true. |