For the equilibrium, \(AB(g) ⇌ A(g) + B(g)\), \(K_p\) is equal to four times the total pressure. What will be the number of moles of \(A\) formed. |
\(\frac{5}{\sqrt{2}}\) \(\frac{2}{\sqrt{5}}\) \(\frac{2}{\sqrt{3}}\) \(\frac{3}{\sqrt{2}}\) |
\(\frac{2}{\sqrt{5}}\) |
The correct answer is option 2. \(\frac{2}{\sqrt{5}}\). Let the total equilibrium pressure be \(= P\) Given, \(K_p = 4P\) Let the start be made with \(1\) mole of \(AB(g)\) and the degree of dissociation be \(x\)
Total moles at equilibrium \(= 1 + x + x + x = 1 + x\) Thus, \(p_A\) = Partial pressure of \(A\) = \(\frac{x}{1 + x}.P\) \(p_B\) = Partial pressure of \(B\) = \(\frac{x}{1 + x}.P\) \(p_{AB}\) = Partial pressure of \(AB\) = \(\frac{1 - x}{1 + x}.P\) Applying the law of mass action, \(K_p = \frac{p_A \times p_B}{p_{AB}}\) or, \(K_p = \frac{\left(\frac{x}{1 + x}.P\right)\left(\frac{x}{1 + x}.P\right)}{\left(\frac{1 - x}{1 + x}.P\right)}\) or, \(4P = \frac{x^2}{1 - x^2}.P\) or, \(4 - 4x^2 = x^2\) or, \(5x^2 = 4\) or, \(x = \frac{2}{\sqrt{5}}\) Hence, number of moles of \(A\) formed \(= \frac{2}{\sqrt{2}{5}}\) times initial moles of \(AB\) taken |