The value of $p$ so that the lines $\frac{x-1}{-3}=\frac{2y-2}{2p}=\frac{z-3}{2}$ and $\frac{x-1}{-3p}=\frac{y-1}{4}=\frac{6-z}{5}$ are at right angles is |
$-\frac{10}{17}$ $-\frac{10}{13}$ $\frac{10}{13}$ $\frac{10}{17}$ |
$\frac{10}{13}$ |
The correct answer is Option (3) → $\frac{10}{13}$ Direction ratios of line (1): $\frac{x-1}{-3} = \frac{2y-2}{2p} = \frac{z-3}{2}$ ⇒ direction ratios = $(-3,\,p,\,2)$ Direction ratios of line (2): $\frac{x-1}{-3p} = \frac{y-1}{4} = \frac{6-z}{5}$ ⇒ direction ratios = $(-3p,\,4,\,-5)$ If the lines are perpendicular, then their dot product = 0: $(-3)(-3p) + (p)(4) + (2)(-5) = 0$ $9p + 4p - 10 = 0$ $13p - 10 = 0$ $p = \frac{10}{13}$ Final Answer: $p = \frac{10}{13}$ |