The value of $k$ for which the function, defined by, $f(x) = \left\{\begin{matrix}\frac{3x+4\tan x}{x}:&x≠0\\k:&x=0\end{matrix}\right.$ is continuous at $x = 0$, is |
3 4 7 0 |
7 |
The correct answer is Option (3) → 7 Given: $f(x) = \begin{cases} \frac{3x + 4\tan x}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ To ensure continuity at $x = 0$, the following must hold: $\lim\limits_{x \to 0} f(x) = f(0) = k$ Evaluate the limit: $\lim\limits_{x \to 0} \frac{3x + 4\tan x}{x}$ $= \lim\limits_{x \to 0} \left( 3 + 4 \cdot \frac{\tan x}{x} \right)$ Using identity: $\lim\limits_{x \to 0} \frac{\tan x}{x} = 1$ $= 3 + 4 \cdot 1 = 7$ Hence, for continuity: $k = 7$ |