If the curve $y=a x^3+b x^2+c x+5$ touches the x-axis at A(-2, 0) and cuts the y-axis at a point B where its slope is 3. Then, |
$a=\frac{1}{2}, b=-\frac{3}{4}, c=3$ $a=-\frac{1}{2}, b=-\frac{3}{4}, c=3$ $a=\frac{1}{2}, b=\frac{3}{4}, c=3$ none of these |
$a=-\frac{1}{2}, b=-\frac{3}{4}, c=3$ |
We have, $y=a x^3+b x^2+c x+5$ ..........(i) $\Rightarrow \frac{d y}{d x}=3 a x^2+2 b x+c$ ..........(ii) Since the curve (i) touches x-axis at A(-2, 0). Therefore, point A lies on (i) and $\left(\frac{d y}{d x}\right)_A=0$ ∴ $-8 a+4 b-2 c+5=0$ ..........(iii) and, $12 a-4 b+c=0$ ..........(iv) The curve (i) cuts y-axis at B(0, 5). It is given that $\left(\frac{d y}{d x}\right)_B=3 \Rightarrow c=3$ Putting c = 3 in (iii) and (iv) and solving them, we get $a=-\frac{1}{2}$ and $b=-\frac{3}{4}$ |