Let \(a,b\) and \(c\) are real numbers which are in arithmetic progression. Let \(\triangle=\left|\begin{array}{lll} 2y+4 & 5y+7 & 8y+a\\ 3y+5 & 6y+8 & 9y+b\\ 4y+6& 7y+9& 10y+c\end{array}\right|\) Then |
\(\triangle\) depends on values of \(a,b,c\) \(\triangle\) depends on values of \(x,y,z\) \(\triangle\) is always zero \(\triangle\) is a non-negative real number |
\(\triangle\) is always zero |
The correct answer is Option (3) → \(\triangle\) is always zero \(\triangle=\left|\begin{array}{lll} 2y+4 & 5y+7 & 8y+a\\ 3y+5 & 6y+8 & 9y+b\\ 4y+6& 7y+9& 10y+c\end{array}\right|\) $R_1→R_1+R_3-2R_2$ $Δ=\left|\begin{array}{lll} 0& 0 & a+c-2b\\ 3y+5 & 6y+8 & 9y+b\\ 4y+6& 7y+9& 10y+c\end{array}\right|$ and, if a, b and c are in A.P. $⇒b-a=c-b$ $⇒2b=a+c$ $⇒a+c-2b=0$ $∴Δ=\left|\begin{array}{lll} 0& 0 & 0\\ 3y+5 & 6y+8 & 9y+b\\ 4y+6& 7y+9& 10y+c\end{array}\right|=0$ |