If $\begin{bmatrix}0 & x+y & x+z\\4 & 0 & y+z\\3 & 5 & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of $(x, y, z)$ is : |
(-1, -3, -2) (-2, -1, -3) (-3, -1, -2) (-1, -2, -3) |
(-1, -3, -2) |
The correct answer is Option (1) → (-1, -3, -2) $A^T=-A$ [A = Skew Symmetric] $∴\begin{bmatrix}0&4&3\\x+y & 0&5\\x+z&y+z&0\end{bmatrix}=\begin{bmatrix}0 & -(x+y) & -(x+z)\\-4 & 0 & -(y+z)\\-3 & -5 & 0 \end{bmatrix}$ $⇒x+y=-4$ ...(1) $x+z=-3$ ...(2) $y+z=-5$ ...(5) Subtracting (3) from (2), $⇒x-y=2$ ...(4) Add (1) and (4), $2x=2$ $⇒x=-1,y=-3,z=-2$ |