The value of the integral $∫\left(e^x tan^{-1}x+\frac{e^x}{1+x^2}\right) dx $ is : |
$e^x\, tan^{-1} x + C, $ where C is a constant $e^x\, tan x + C, $ where C is a constant $e^{-x}\, tan x + C, $ where C is a constant $e^{-x}\, tan^{-1} x + C, $ where C is a constant |
$e^x\, tan^{-1} x + C, $ where C is a constant |
The correct answer is Option (1) → $e^x\, tan^{-1} x + C, $ where C is a constant $\int e^x(\tan^{-1}x+\frac{1}{1+x^2})dx=e^x\tan^{-1}x+C$ $f(x)=\tan^{-1}x$ $f'(x)=\frac{1}{1+x^2}$ as $\int e^x\left(f(x)+f'(x)\right)dx=e^xf(x)+C$ |