If $\vec{a} $ and $\vec{b}$ are unit vectors, then the angle between $\vec{a}$ and $\vec{b}$ for $\vec{a}+\sqrt{3}\vec{b}$ to be a unit vector is given by : |
$\frac{\pi }{6}$ $\frac{5\pi }{6}$ $\frac{\pi }{3}$ $\frac{2\pi }{3}$ |
$\frac{5\pi }{6}$ |
The correct answer is Option (2) → $\frac{5\pi }{6}$ $|\vec a+\sqrt{3}\vec b|$ $⇒(\vec a+\sqrt{3}\vec b).(\vec a+\sqrt{3}\vec b)=1$ So $|\vec a|^2+3|\vec b|^2+2\sqrt{3}\vec a.\vec b=1$ $2\sqrt{3}\vec a.\vec b=-3$ $|\vec a||\vec b|\cos θ=-\frac{\sqrt{3}}{2}$ $⇒θ=π-\frac{π}{6}=\frac{5π}{6}$ |