CUET Preparation Today
CUET
-- Mathematics - Section B1
Applications of Derivatives
If the function f(x)=3cos|x|−6ax+b increases for all x∈R, then the range of values of a is given by |
(−1/2,∞) (−∞,−1/2) (−∞,−2) (−2,∞) |
(−∞,−1/2) |
We have, f(x)=3cos|x|−6ax+b ⇒f(x)=3cosx−6ax+b [∵ cos |x| = cos x for all x] ⇒f′(x)=−3sinx−6a For f(x) to be increasing on R, we must have f′(x)>0 for all x∈R ⇒−3sinx−6a>0 for all x∈R ⇒sinx+2a<0 for all x∈R ⇒sinx<−2a for all x∈R ⇒1>−2a [∵ Max. value of sin x is 1] ⇒a<−12 ⇒a∈(−∞,−1/2) |