If the function $f(x)= a log x + \frac{b}{x}+x$ has extreme values at $ x= 1 $ and $x= 3 $, then (a, b) is : |
$\left(-\frac{1}{2},-\frac{3}{2}\right)$ $(4, 3)$ $(-2, -1)$ $(-4, -3)$ |
$(-4, -3)$ |
The correct answer is Option (4) → $(-4, -3)$ $f(x)=a\log x+bx+x$ $f'(x)=\frac{a}{x}+b+1$ Since $f(x)$ has extreme value at $x=1$ and $x=3$, we set $f'(x)=0$ $\frac{a}{1}+b+1=0$ $a+b=-1$ $(x=1)$ ....(1) $\frac{a}{3}+b+1=0$ $\frac{a}{3}+b=-1$ $(x=3)$ ....(2) from (1) and (2), $b=-1$ and $a=0$ |