Let A be an invertible matrix. Which of the following is not true? |
$(A^T)^{-1}=(A^{-1})^T$ $A^{-1}=|A|^{-1}$ $(A^2)^{-1}=(A^{-1})^2$ $|A^{-1}|=|A|^{-1}$ |
$A^{-1}=|A|^{-1}$ |
We know that $(A^T)^{-1} = (A^{-1})^T$ So, option (1) is true. In option (2), $A^{-1}$ is a matrix and $|A|^{-1}$ is a number. So, it is not true. Now, $A^2 (A^{-1})^2=(AA) (A^{-1} A^{-1})$ $⇒A^2 (A^{-1})^2=A (AA^{-1}) A^{-1} = (AI) A^{-1}=AA^{-1} = I$ $∴(A^2)^{-1}=(A^{-1})^2$ So, option (3) is true. |