If $x=at^2, y -\frac{a}{t^2}, $ then the value of $\frac{d^2y}{dx^2}$ at t =1 is : |
$\frac{2}{a}$ $\frac{2}{3a}$ $2a$ $\frac{a}{2}$ |
$\frac{2}{a}$ |
The correct answer is Option (1) → $\frac{2}{a}$ $x = at^2$, $y = \frac{a}{t^2}$ $\frac{dx}{dt} = 2at$, $\frac{dy}{dt} = -\frac{2a}{t^3}$ $\frac{dy}{dx} = \frac{-\frac{2a}{t^3}}{2at} = -\frac{1}{t^4}$ $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( -\frac{1}{t^4} \right) = \frac{\frac{d}{dt} \left( -\frac{1}{t^4} \right)}{\frac{dx}{dt}}$ $\frac{d}{dt} \left( -\frac{1}{t^4} \right) = 4 \cdot \frac{1}{t^5}$ $\frac{d^2y}{dx^2} = \frac{4 \cdot \frac{1}{t^5}}{2at} = \frac{2}{at^6}$ we substitute $t = 1$ into the expression for $\frac{d^2y}{dx^2}$: $\frac{d^2y}{dx^2} \bigg|_{t=1} = \frac{2}{a \cdot 1^6} = \frac{2}{a}$ |