Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

The number of triplets satisfying $sin^{-1}x + cos^{-1} y + tan^{-1} z = 2 \pi , $ is

Options:

0

2

1

infinite

Correct Answer:

0

Explanation:

We know that

$sin^{-1} x ≤ \frac{\pi}{2},\cos^{-1} y ≤ \pi, \tan^{-1} z ≤ \frac{\pi}{2}$

so $\sin^{-1}x+\cos^{-1}y+\tan^{-1} z<\frac{\pi}{2}$

No triplet exists.