The area of the shaded portion is: |
$\left(\pi-\frac{8}{3}\right)$ sq. units $\left(\frac{8}{3}+\pi\right)$ sq. units $\left(\frac{\pi}{2}-\frac{4}{3}\right)$ sq. units $\left(\frac{\pi}{2}+\frac{4}{3}\right)$ sq. units |
$\left(\pi-\frac{8}{3}\right)$ sq. units |
The correct answer is Option (1) - $\left(\pi-\frac{8}{3}\right)$ sq. units finding intersection $y^2=2x$ $x^2+y^2=4x⇒x^2+2x=4x$ $⇒x^2=2x$ $⇒x=0,2$ so area = $\int\limits_0^2\sqrt{4x-x^2}-\sqrt{2x}dx$ $=\int\limits_0^2\sqrt{2^2-(x-2)^2}-\sqrt{2x}dx$ $=\left[\frac{(x-2)}{2}\sqrt{4x-x^2}+\frac{4}{2}\sin^{-1}\frac{x}{2}-\frac{2\sqrt{2}}{3}\sqrt{x}(x)\right]_0^2$ $=\pi-\frac{8}{3}$ sq. units |