Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Linear Programming

Question:

The programming problem Max $Z=2x+3y$ subject to the conditions $0 ≤x≤3, 0 ≤y≤4$ is:

Options:

not an LPP

an LPP, with unbounded feasible region and no solution

an LPP, and Max $Z = 18$, at $x=3, y=4$

an LPP, and Max $Z = 12$, at $x = 0, y=4$

Correct Answer:

an LPP, and Max $Z = 18$, at $x=3, y=4$

Explanation:

objective fn → $Z=2x+3y$

constraints : $0 ≤x≤3$ → rectangular region

$0 ≤y≤4$

corner point $z(x,y)=2x+3y$

(0, 0) → Z(0, 0) = 0 + 0 = 0  (Z-min)

(3, 0) → Z(3, 0) = 6 + 0 = 6

(0, 4) → Z(0, 4) = 0 + 12 = 12

(3, 4) → Z(3, 4) = 6 + 12 = 18  (Z-max)