When a light of photons of energy 4.2 eV is incident on a metallic sphere of radius 10 cm and work function 2.4 eV, photoelectrons are emitted. The number of photoelectrons liberated before the emission is stopped, is ($e=1.6×10^{-19}C$ and $\frac{1}{4πε_0}=9×10^9Nm^2C^{-2}$) |
$6.25×10^8$ $1.25×10^9$ $1.25×10^8$ $6.25×10^{18}$ |
$1.25×10^8$ |
Here, Radius of the sphere, r = 10 cm = $10×10^{-2}m$ Work function, $\phi_0 = 2.4eV$ Energy of a photon, E = hv = 4.2eV According to Einstein’s photoelectric equation $hv=\phi_0+eV_s$ $4.2eV=2.4eV+eV_s$ $eV_s=4.2eV-2.4eV=1.8eV$ $∴V_s=1.8V$ The sphere will stop emitting photoelectrons, when the potential on its surface becomes 1.8 V. Let N be the number of photoelectrons emitted from the sphere. Then, Charge on the sphere, Q = Ne $V_s=\frac{1}{4πε_0}\frac{Q}{r}=\frac{1}{4πε_0}\frac{Ne}{r}$ $N=\frac{V_s×r}{\frac{1}{4πε_0}×e}=\frac{1.8×r}{\frac{1}{4πε_0}×e}=\frac{1.8×10×10^{-2}}{9×10^9×1.6×10^{-19}}=\frac{18}{19}×\frac{1}{9}×10^9=1.25×10^8$ |