The shortest distance (in units) between the lines $\frac{1-x}{1}=\frac{2y-10}{2}=\frac{z+1}{1}$ and $\frac{x-3}{-1}=\frac{y-5}{1}=\frac{z-0}{1}$ is: |
$\frac{\sqrt{11}}{\sqrt{3}}$ $\frac{11}{3}$ $\frac{14}{3}$ $\sqrt{\frac{14}{3}}$ |
$\sqrt{\frac{14}{3}}$ |
The correct answer is Option (4) → $\sqrt{\frac{14}{3}}$ The given line are, $\frac{1-x}{1}=\frac{2y-10}{2}=\frac{z+1}{1}$ $⇒x=1-t,y=\frac{10+2t}{2},z=-1+t$ ∴ Direction vector, $d_1=(-1,1,1)$ for second line, $\frac{x-3}{-1}=\frac{y-5}{1}=\frac{z-0}{1}$ $⇒x=3-s,y=5+s,z=s$ $∴d_2=(-1,1,1)$ Point on 1st line, $r_1=(1,5,-1)$ Point on 2nd line, $r_2=(3,5,0)$ $d=\frac{|(r_2-r_1)×d_1|}{|d_1|}$ $=\frac{|(2,0,1)×(-1,1,1)|}{\sqrt{(-1)^2+(1)^2+(1)^2}}$ $\begin{vmatrix}\hat i&\hat j&\hat k\\2&0&1\\-1&1&1\end{vmatrix}$ $=\frac{|-1\hat i-3\hat j+2\hat k|}{\sqrt{3}}$ $=\frac{\sqrt{(-1)^2+(-3)^2+(2)^2}}{\sqrt{3}}$ $=\sqrt{\frac{14}{3}}$ |