A man can walk uphill at the rate of $2\frac{1}{2}$ km/hr and down hill at the rate of $3\frac{1}{4}$ km/hr. If the total time required to 22 walk a certain distance up the hill and return to the starting point is 4 hr. 36 min, then what is the distance walked up the hill by the man? |
$6\frac{1}{2}$ km $5\frac{1}{2}$ km $4\frac{1}{2}$ km 4 km |
$6\frac{1}{2}$ km |
The correct answer is Option (1) → $6\frac{1}{2}$ km Let the uphill distance be $x$ km. Uphill speed = $\frac{5}{2}$ km/h, Downhill speed = $\frac{13}{4}$ km/h Total time = 4 hr 36 min = $\frac{23}{5}$ hr Time taken uphill = $\frac{x}{5/2} = \frac{2x}{5}$ Time taken downhill = $\frac{x}{13/4} = \frac{4x}{13}$ Total time: $\frac{2x}{5} + \frac{4x}{13} = \frac{23}{5}$ LCM of 5 and 13 = 65 $\Rightarrow \frac{26x + 20x}{65} = \frac{23}{5}$ $\Rightarrow \frac{46x}{65} = \frac{23}{5}$ $\Rightarrow x = \frac{23}{5} \cdot \frac{65}{46} = \frac{13}{2} = 6.5$ |