If $\begin{bmatrix} a+b & 2\\5 & ab\end{bmatrix}=\begin{bmatrix}6&2 \\5&8\end{bmatrix}$ Then one set of values of a and b is : |
4, 2 3, 4 3, 5 8, 4 |
4, 2 |
The correct answer is Option (1) → 4, 2 $\begin{bmatrix} a+b & 2\\5 & ab\end{bmatrix}=\begin{bmatrix}6&2 \\5&8\end{bmatrix}$ $⇒a+b=6$ ...(1) $⇒ab=8$ ...(2) from (1) and (2), $\frac{8}{b}+b=6$ $8+b^2=6b$ $b^2-6b+8=0$ $(b-4)(b-2)=0$ $b=4\,or\,2$ $a=2\,or\,4$ |