If $A=\begin{bmatrix}1 & 2 & -1\\2 & 3& 0\\1 & -1 & 2 \end{bmatrix}$, then adj (A) is : |
$\begin{bmatrix}1 & 2 & 1\\2 & 3& -1\\-1 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix}6 & -4 & -5\\-3 & 3& 3\\3 & -2 & -1 \end{bmatrix}$ $\begin{bmatrix}6 & -3 & 3\\-4 & 3 & -2\\-5 & 3 & -1 \end{bmatrix}$ $\begin{bmatrix}1 & 2 & -1\\2 & 3& 0\\1 & -1 & 2 \end{bmatrix}$ |
$\begin{bmatrix}6 & -3 & 3\\-4 & 3 & -2\\-5 & 3 & -1 \end{bmatrix}$ |
The correct answer is Option (3) → $\begin{bmatrix}6 & -3 & 3\\-4 & 3 & -2\\-5 & 3 & -1 \end{bmatrix}$ $A=\begin{bmatrix}1 & 2 & -1\\2 & 3& 0\\1 & -1 & 2 \end{bmatrix}$ The co-factor matrices are, $A_{11}=(3×2-(-1)0)=6$ $A_{12}=-(2×2-1×0)=-4$ $A_{13}=(2×-1-3×1)=-5$ $A_{21}=-(4-1)=-3$ $A_{22}=(1×2-1(-1)1)=3$ $A_{23}=-(1×-1-2×1)=3$ $A_{31}=(2×0+3×1)=3$ $A_{32}=-(1×0+2)=-2$ $A_{33}=(1×3-2×2)=-1$ $Adj\,A=\begin{bmatrix}6&-4&-5\\-3&3&3\\3&-2&-1\end{bmatrix}^T$ $=\begin{bmatrix}6 & -3 & 3\\-4 & 3 & -2\\-5 & 3 & -1 \end{bmatrix}$ |