$\int \frac{\pi}{x^{n+1}-x} d x=$ |
$\frac{\pi}{n} \log _e\left|\frac{x^n-1}{x^n}\right|+C$ $\log _e\left|\frac{x^n+1}{x^n-1}\right|+C$ $\frac{\pi}{n} \log _e\left|\frac{x^n+1}{x^n}\right|+C$ $\pi \log _e\left|\frac{x^n}{x^n-1}\right|+C$ |
$\frac{\pi}{n} \log _e\left|\frac{x^n-1}{x^n}\right|+C$ |
The correct answer is Option (1) → $\frac{\pi}{n} \log _e\left|\frac{x^n-1}{x^n}\right|+C$ $\int \frac{\pi}{x^{n+1}-x} d x$ $=\int\frac{πx^{-(n+1)}}{1-x^{-n}}dx$ so $y=1-x^{-n}$ $dy=nx^{-(n+1)}dx$ so $I=\int\frac{π}{n}\frac{1}{y}dy$ $=\frac{π}{n}\log y+c$ $=\frac{π}{n}\log(1-x^{-n})+c$ $=\frac{π}{n}\log\left|\frac{x^n-1}{x^n}\right|+c$ |