CUET Preparation Today
CUET
-- Mathematics - Section B1
Relations and Functions
The range of the function $f(x)=x^2+\frac{1}{x^2+1}$ is
$[1, \infty)$
$[2, \infty)$
$\left.\frac{3}{2}, \infty\right)$
None of these
$f(x)=x^2+\frac{1}{1+x^2}$
as $x=0$ $f(x)=1$
$x > 0$ or $x < 0 ⇒ x^2 > 0 ⇒ f(x) > 1$
so $f(x) ≥ 1$