If $cos^2y+sin\, xy =\lambda, $ then $\frac{dy}{dx}=$ |
$\frac{cos\, xy}{2\, sin\, y\, cos \, y}$ $\frac{y\, cos\, xy}{xcos xy -2sin ycos y}$ $\frac{ycosxy}{sin2y-xcosxy}$ $-\frac{ycosxy}{sin2y+xcosxy}$ |
$\frac{ycosxy}{sin2y-xcosxy}$ |
Given: $\cos^2 y + \sin(xy) = \lambda$ Differentiating both sides with respect to $x$: $\frac{d}{dx}(\cos^2 y) + \frac{d}{dx}(\sin(xy)) = \frac{d}{dx}(\lambda)$ $-2 \cos y \sin y \frac{dy}{dx} + \cos(xy) \frac{d}{dx}(xy) = 0$ $-2 \cos y \sin y \frac{dy}{dx} + \cos(xy) \left(y + x \frac{dy}{dx}\right) = 0$ Collecting $\frac{dy}{dx}$ terms: $\left(-2 \cos y \sin y + x \cos(xy)\right) \frac{dy}{dx} + y \cos(xy) = 0$ Solving for $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{-y \cos(xy)}{-2 \cos y \sin y + x \cos(xy)}$ $\frac{dy}{dx} = \frac{y \cos(xy)}{2 \cos y \sin y - x \cos(xy)}$ |