Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Probability Distributions

Question:

If a random variable X follows Poisson distribution such that $3P(X=1) =P(X+2),$ then $P(X=4)$ is ,

Options:

$76e^{-4}$

$18e^{-6}$

$54e^{-6}$

$36e^{-6}$

Correct Answer:

$54e^{-6}$

Explanation:

The correct answer is Option (3) → $54e^{-6}$

Random variable X follows Poisson distributions,

$P(X=k)=\frac{e^{-λ}λ^k}{k!}$

$3P(X=1)=P(X=2)$

$3λe^{-λ}=\frac{λ^2e^{-λ}}{2!}$

$⇒λ(λ-6)=0⇒λ=6$

$∴P(X=4)=\frac{e^{-6}6^4}{4!}=54e^{-6}$