If a random variable X follows Poisson distribution such that $3P(X=1) =P(X+2),$ then $P(X=4)$ is , |
$76e^{-4}$ $18e^{-6}$ $54e^{-6}$ $36e^{-6}$ |
$54e^{-6}$ |
The correct answer is Option (3) → $54e^{-6}$ Random variable X follows Poisson distributions, $P(X=k)=\frac{e^{-λ}λ^k}{k!}$ $3P(X=1)=P(X=2)$ $3λe^{-λ}=\frac{λ^2e^{-λ}}{2!}$ $⇒λ(λ-6)=0⇒λ=6$ $∴P(X=4)=\frac{e^{-6}6^4}{4!}=54e^{-6}$ |