Interval in which the function $f$ given by $f(x) = \tan x - 4x, x ∈ (0,\frac{\pi}{2})$ is strictly decreasing is |
$0<x<\frac{\pi}{3}$ $\frac{\pi}{3}<x<\frac{\pi}{2}$ $\frac{\pi}{4}<x<\frac{\pi}{2}$ $\frac{\pi}{2}>x>0$ |
$0<x<\frac{\pi}{3}$ |
The correct answer is Option (1) → $0<x<\frac{\pi}{3}$ $f(x) = \tan x - 4x$ $f'(x) = \sec^2 x - 4$ $f'(x) < 0 \Rightarrow \sec^2 x - 4 < 0 \Rightarrow \sec^2 x < 4 \Rightarrow \cos^2 x > \frac{1}{4} \Rightarrow \cos x > \frac{1}{2}$ $\cos x > \frac{1}{2} \Rightarrow x \in \left(0,\ \frac{\pi}{3}\right)$ $\Rightarrow f(x) \text{ is strictly decreasing in } \left(0,\ \frac{\pi}{3}\right)$ |