Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Probability

Question:

If \( \vec{a}, \vec{b}\) and \(\vec{c} \) are three unit vectors such that \( \vec{a} + 2\vec{b} - 3\vec{c} = \vec{0} \), then the value of \( 2\vec{a} \cdot \vec{b} - 6\vec{b} \cdot \vec{c} - 3\vec{c} \cdot \vec{a} \) is:

Options:

-7

-14

7

14

Correct Answer:

-7

Explanation:

The correct answer is Option (1) → -7

$\vec{a} + 2\vec{b} - 3\vec{c} = \vec{0} \Rightarrow \vec{a} = -2\vec{b} + 3\vec{c}$

$2\vec{a} \cdot \vec{b} - 6\vec{b} \cdot \vec{c} - 3\vec{c} \cdot \vec{a}$

Substitute $\vec{a} = -2\vec{b} + 3\vec{c}$:

$= 2(-2\vec{b} + 3\vec{c}) \cdot \vec{b} - 6\vec{b} \cdot \vec{c} - 3\vec{c} \cdot (-2\vec{b} + 3\vec{c})$

$= 2(-2\vec{b} \cdot \vec{b} + 3\vec{c} \cdot \vec{b}) - 6\vec{b} \cdot \vec{c} - 3(-2\vec{c} \cdot \vec{b} + 3\vec{c} \cdot \vec{c})$

$= 2(-2 + 3\vec{b} \cdot \vec{c}) - 6\vec{b} \cdot \vec{c} + 6\vec{c} \cdot \vec{b} - 9$

$= -4 + 6\vec{b} \cdot \vec{c} - 6\vec{b} \cdot \vec{c} + 6\vec{b} \cdot \vec{c} - 9$

$= -13 + 6\vec{b} \cdot \vec{c}$

Since $\vec{b} \cdot \vec{c} = \frac{1}{2}(\|\vec{b}\|^2 + \|\vec{c}\|^2 - \|\vec{b} - \vec{c}\|^2)$ and both are unit vectors:

$\vec{b} \cdot \vec{c} \in [-1, 1]$ so maximum value of expression is $-13 + 6(1) = -7$

But from the equation $\vec{a} + 2\vec{b} - 3\vec{c} = 0$, squaring both sides:

$\|\vec{a} + 2\vec{b} - 3\vec{c}\|^2 = 0$

$\vec{a}^2 + 4\vec{b}^2 + 9\vec{c}^2 + 4\vec{a} \cdot \vec{b} - 6\vec{a} \cdot \vec{c} - 12\vec{b} \cdot \vec{c} = 0$

$1 + 4 + 9 + 4\vec{a} \cdot \vec{b} - 6\vec{a} \cdot \vec{c} - 12\vec{b} \cdot \vec{c} = 0$

$14 + 4\vec{a} \cdot \vec{b} - 6\vec{a} \cdot \vec{c} - 12\vec{b} \cdot \vec{c} = 0$

$4\vec{a} \cdot \vec{b} - 6\vec{a} \cdot \vec{c} - 12\vec{b} \cdot \vec{c} = -14$

Divide by 2:

$2\vec{a} \cdot \vec{b} - 3\vec{a} \cdot \vec{c} - 6\vec{b} \cdot \vec{c} = -7$

$\Rightarrow 2\vec{a} \cdot \vec{b} - 6\vec{b} \cdot \vec{c} - 3\vec{c} \cdot \vec{a} = -7$